Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cancer Res Commun ; 3(12): 2623-2639, 2023 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-38051103

RESUMO

Currently, there are no clinically approved drugs that directly thwart mutant KRAS G12D, a major driver of human cancer. Here, we report on the discovery of a small molecule, KRB-456, that binds KRAS G12D and inhibits the growth of pancreatic cancer patient-derived tumors. Protein nuclear magnetic resonance studies revealed that KRB-456 binds the GDP-bound and GCP-bound conformation of KRAS G12D by forming interactions with a dynamic allosteric binding pocket within the switch-I/II region. Isothermal titration calorimetry demonstrated that KRB-456 binds potently to KRAS G12D with 1.5-, 2-, and 6-fold higher affinity than to KRAS G12V, KRAS wild-type, and KRAS G12C, respectively. KRB-456 potently inhibits the binding of KRAS G12D to the RAS-binding domain (RBD) of RAF1 as demonstrated by GST-RBD pulldown and AlphaScreen assays. Treatment of KRAS G12D-harboring human pancreatic cancer cells with KRB-456 suppresses the cellular levels of KRAS bound to GTP and inhibits the binding of KRAS to RAF1. Importantly, KRB-456 inhibits P-MEK, P-AKT, and P-S6 levels in vivo and inhibits the growth of subcutaneous and orthotopic xenografts derived from patients with pancreatic cancer whose tumors harbor KRAS G12D and KRAS G12V and who relapsed after chemotherapy and radiotherapy. These results warrant further development of KRB-456 for pancreatic cancer. SIGNIFICANCE: There are no clinically approved drugs directly abrogating mutant KRAS G12D. Here, we discovered a small molecule, KRB-456, that binds a dynamic allosteric binding pocket within the switch-I/II region of KRAS G12D. KRB-456 inhibits P-MEK, P-AKT, and P-S6 levels in vivo and inhibits the growth of subcutaneous and orthotopic xenografts derived from patients with pancreatic cancer. This discovery warrants further advanced preclinical and clinical studies in pancreatic cancer.


Assuntos
Neoplasias Pancreáticas , Proteínas Proto-Oncogênicas p21(ras) , Humanos , Proteínas Proto-Oncogênicas p21(ras)/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Linhagem Celular Tumoral , Neoplasias Pancreáticas/tratamento farmacológico , Quinases de Proteína Quinase Ativadas por Mitógeno/metabolismo
2.
Nat Commun ; 14(1): 8381, 2023 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-38104127

RESUMO

The BCL-2 family protein BAX is a major regulator of physiological and pathological cell death. BAX predominantly resides in the cytosol in a quiescent state and upon stress, it undergoes conformational activation and mitochondrial translocation leading to mitochondrial outer membrane permeabilization, a critical event in apoptosis execution. Previous studies reported two inactive conformations of cytosolic BAX, a monomer and a dimer, however, it remains unclear how they regulate BAX. Here we show that, surprisingly, cancer cell lines express cytosolic inactive BAX dimers and/or monomers. Expression of inactive dimers, results in reduced BAX activation, translocation and apoptosis upon pro-apoptotic drug treatments. Using the inactive BAX dimer structure and a pharmacophore-based drug screen, we identify a small-molecule modulator, BDM19 that binds and activates cytosolic BAX dimers and prompts cells to apoptosis either alone or in combination with BCL-2/BCL-XL inhibitor Navitoclax. Our findings underscore the role of the cytosolic inactive BAX dimer in resistance to apoptosis and demonstrate a strategy to potentiate BAX-mediated apoptosis.


Assuntos
Antineoplásicos , Apoptose , Proteína X Associada a bcl-2/metabolismo , Citosol/metabolismo , Transporte Biológico , Antineoplásicos/farmacologia , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Proteína bcl-X/metabolismo
3.
Elife ; 112022 08 30.
Artigo em Inglês | MEDLINE | ID: mdl-36040792

RESUMO

Background: Mutations in the SF3B1 splicing factor are commonly seen in myelodysplastic syndromes (MDS) and acute myeloid leukemia (AML), yet the specific oncogenic pathways activated by mis-splicing have not been fully elucidated. Inflammatory immune pathways have been shown to play roles in the pathogenesis of MDS, though the exact mechanisms of their activation in splicing mutant cases are not well understood. Methods: RNA-seq data from SF3B1 mutant samples was analyzed and functional roles of interleukin-1 receptor-associated kinase 4 (IRAK4) isoforms were determined. Efficacy of IRAK4 inhibition was evaluated in preclinical models of MDS/AML. Results: RNA-seq splicing analysis of SF3B1 mutant MDS samples revealed retention of full-length exon 6 of IRAK4, a critical downstream mediator that links the Myddosome to inflammatory NF-kB activation. Exon 6 retention leads to a longer isoform, encoding a protein (IRAK4-long) that contains the entire death domain and kinase domain, leading to maximal activation of NF-kB. Cells with wild-type SF3B1 contain smaller IRAK4 isoforms that are targeted for proteasomal degradation. Expression of IRAK4-long in SF3B1 mutant cells induces TRAF6 activation leading to K63-linked ubiquitination of CDK2, associated with a block in hematopoietic differentiation. Inhibition of IRAK4 with CA-4948, leads to reduction in NF-kB activation, inflammatory cytokine production, enhanced myeloid differentiation in vitro and reduced leukemic growth in xenograft models. Conclusions: SF3B1 mutation leads to expression of a therapeutically targetable, longer, oncogenic IRAK4 isoform in AML/MDS models. Funding: This work was supported by Cincinnati Children's Hospital Research Foundation, Leukemia Lymphoma Society, and National Institute of Health (R35HL135787, RO1HL111103, RO1DK102759, RO1HL114582), Gabrielle's Angel Foundation for Cancer Research, and Edward P. Evans Foundation grants to DTS. AV is supported by Edward P. Evans Foundation, National Institute of Health (R01HL150832, R01HL139487, R01CA275007), Leukemia and Lymphoma Society, Curis and a gift from the Jane and Myles P. Dempsey family. AP and JB are supported by Blood Cancer UK (grants 13042 and 19004). GC is supported by a training grant from NYSTEM. We acknowledge support of this research from The Einstein Training Program in Stem Cell Research from the Empire State Stem Cell Fund through New York State Department of Health Contract C34874GG. MS is supported by a National Institute of Health Research Training and Career Development Grant (F31HL132420).


Genes contain blocks of code that tell cells how to make each part of a protein. Between these blocks are sections of linking DNA, which cells remove when they are preparing to use their genes. Scientists call this process 'splicing'. Cells can splice some genes in more than one way, allowing them to make different proteins from the same genetic code. Mutations that affect the splicing process can change the way cells make their proteins, leading to disease. For example, the myelodysplastic syndromes are a group of blood cancers often caused by mutations in splicing proteins, such as SF3B1. The disorder stops blood cells from maturing and causes abnormal inflammation. So far, the link between splicing, blood cell immaturity, inflammation and cancer is not clear. To find out more, Choudhary, Pellagatti et al. looked at the spliced genetic code from people with myelodysplastic syndromes. Mutations in the splicing protein SF3B1 changed the way cells spliced an important signalling molecule known as IRAK4. Affected cells cut out less genetic code and made a longer version of this signalling protein, named IRAK4-Long. This altered protein activated inflammation and stopped blood cells from maturing. Blocking IRAK4-Long reversed the effects. It also reduced tumour formation in mice carrying affected human cells. The molecule used to block IRAK4, CA-4948 ­ also known as Emavusertib ­ is currently being evaluated in clinical trials for myelodysplastic syndromes and other types of blood cancer. The work of Choudhary, Pellagatti et al. could help scientists to design genetic tests to predict which patients might benefit from this treatment.


Assuntos
Leucemia Mieloide Aguda , Síndromes Mielodisplásicas , Fosfoproteínas/metabolismo , Fatores de Processamento de RNA/metabolismo , Criança , Humanos , Quinases Associadas a Receptores de Interleucina-1/genética , Quinases Associadas a Receptores de Interleucina-1/metabolismo , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/patologia , Mutação , Síndromes Mielodisplásicas/metabolismo , NF-kappa B/genética , NF-kappa B/metabolismo , Isoformas de Proteínas/metabolismo , Splicing de RNA
4.
Nat Commun ; 13(1): 3775, 2022 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-35798717

RESUMO

Mitofusins reside on the outer mitochondrial membrane and regulate mitochondrial fusion, a physiological process that impacts diverse cellular processes. Mitofusins are activated by conformational changes and subsequently oligomerize to enable mitochondrial fusion. Here, we identify small molecules that directly increase or inhibit mitofusins activity by modulating mitofusin conformations and oligomerization. We use these small molecules to better understand the role of mitofusins activity in mitochondrial fusion, function, and signaling. We find that mitofusin activation increases, whereas mitofusin inhibition decreases mitochondrial fusion and functionality. Remarkably, mitofusin inhibition also induces minority mitochondrial outer membrane permeabilization followed by sub-lethal caspase-3/7 activation, which in turn induces DNA damage and upregulates DNA damage response genes. In this context, apoptotic death induced by a second mitochondria-derived activator of caspases (SMAC) mimetic is potentiated by mitofusin inhibition. These data provide mechanistic insights into the function and regulation of mitofusins as well as small molecules to pharmacologically target mitofusins.


Assuntos
GTP Fosfo-Hidrolases , Mitocôndrias , GTP Fosfo-Hidrolases/metabolismo , Mitocôndrias/metabolismo , Dinâmica Mitocondrial , Membranas Mitocondriais/metabolismo , Proteínas Mitocondriais/metabolismo , Transdução de Sinais
5.
Nat Commun ; 11(1): 4370, 2020 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-32873792

RESUMO

BRAF kinase, a critical effector of the ERK signaling pathway, is hyperactivated in many cancers. Oncogenic BRAFV600E signals as an active monomer in the absence of active RAS, however, in many tumors BRAF dimers mediate ERK signaling. FDA-approved RAF inhibitors poorly inhibit BRAF dimers, which leads to tumor resistance. We found that Ponatinib, an FDA-approved drug, is an effective inhibitor of BRAF monomers and dimers. Ponatinib binds the BRAF dimer and stabilizes a distinct αC-helix conformation through interaction with a previously unrevealed allosteric site. Using these structural insights, we developed PHI1, a BRAF inhibitor that fully uncovers the allosteric site. PHI1 exhibits discrete cellular selectivity for BRAF dimers, with enhanced inhibition of the second protomer when the first protomer is occupied, comprising a novel class of dimer selective inhibitors. This work shows that Ponatinib and BRAF dimer selective inhibitors will be useful in treating BRAF-dependent tumors.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Neoplasias/tratamento farmacológico , Inibidores de Proteínas Quinases/farmacologia , Proteínas Proto-Oncogênicas B-raf/antagonistas & inibidores , Sítio Alostérico/efeitos dos fármacos , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Linhagem Celular Tumoral , Cristalografia por Raios X , Desenho de Fármacos , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Imidazóis/farmacologia , Imidazóis/uso terapêutico , Sistema de Sinalização das MAP Quinases/genética , Simulação de Acoplamento Molecular , Mutação , Neoplasias/genética , Neoplasias/patologia , Inibidores de Proteínas Quinases/química , Inibidores de Proteínas Quinases/uso terapêutico , Multimerização Proteica/efeitos dos fármacos , Subunidades Proteicas/antagonistas & inibidores , Subunidades Proteicas/genética , Subunidades Proteicas/metabolismo , Proteínas Proto-Oncogênicas B-raf/genética , Proteínas Proto-Oncogênicas B-raf/metabolismo , Proteínas Proto-Oncogênicas B-raf/ultraestrutura , Piridazinas/farmacologia , Piridazinas/uso terapêutico , Bibliotecas de Moléculas Pequenas , Relação Estrutura-Atividade
6.
Int J Nanomedicine ; 15: 4899-4918, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32764924

RESUMO

PURPOSE: The use of chemotherapeutic agents to combat cancer is accompanied by high toxicity due to their inability to discriminate between cancer and normal cells. Therefore, cancer therapy research has focused on the targeted delivery of drugs to cancer cells. Here, we report an in vitro study of folate-poly(ethylene glycol)-poly(propylene succinate) nanoparticles (FA-PPSu-PEG-NPs) as a vehicle for targeted delivery of the anticancer drug paclitaxel in breast and cervical cancer cell lines. METHODS: Paclitaxel-loaded-FA-PPSu-PEG-NPs characterization was performed by in vitro drug release studies and cytotoxicity assays. The NPs cellular uptake and internalization mechanism were monitored by live-cell imaging in different cancer cell lines. Expression of folate receptor-α (FOLR1) was examined in these cell lines, and specific FOLR1-mediated entry of the FA-PPSu-PEG-NPs was investigated by free folic acid competition. Using inhibitors for other endocytic pathways, alternative, non-FOLR1 dependent routes for NPs uptake were also examined. RESULTS: Drug release experiments of Paclitaxel-loaded PPSu-PEG-NPs indicated a prolonged release of Paclitaxel over several days. Cytotoxicity of Paclitaxel-loaded PPSu-PEG-NPs was similar to free drug, as monitored in cancer cell lines. Live imaging of cells treated with either free Paclitaxel or Paclitaxel-loaded PPSu-PEG-NPs demonstrated tubulin-specific cell cycle arrest, with similar kinetics. Folate-conjugated NPs (FA-PPSu-PEG-NPs) targeted the FOLR1 receptor, as shown by free folic acid competition of the FA-PPSu-PEG-NPs cellular uptake in some of the cell lines tested. However, due to the differential expression of FOLR1 in the cancer cell lines, as well as the intrinsic differences between the different endocytic pathways utilized by different cell types, other mechanisms of nanoparticle cellular entry were also used, revealing that dynamin-dependent endocytosis and macropinocytosis pathways mediate, at least partially, cellular entry of the FA-PPSu-PEG NPs. CONCLUSION: Our data provide evidence that Paclitaxel-loaded-FA-PPSu-PEG-NPs can be used for targeted delivery of the drug, FA-PPSu-PEG-NPs can be used as vehicles for other anticancer drugs and their cellular uptake is mediated through a combination of FOLR1 receptor-specific endocytosis, and macropinocytosis. The exploration of the different cellular uptake mechanisms could improve treatment efficacy or allow a decrease in dosage of anticancer drugs.


Assuntos
Antineoplásicos/química , Portadores de Fármacos/química , Ácido Fólico/química , Nanopartículas/química , Poliésteres/química , Polietilenoglicóis/química , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Liberação Controlada de Fármacos , Endocitose/efeitos dos fármacos , Receptor 1 de Folato/metabolismo , Ácido Fólico/metabolismo , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Paclitaxel/química , Paclitaxel/farmacologia
7.
J Med Chem ; 61(14): 5775-5793, 2018 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-29461827

RESUMO

Oncogenic BRAF kinase deregulates the ERK signaling pathway in a large number of human tumors. FDA-approved BRAF inhibitors for BRAFV600E/K tumors have provided impressive clinical responses extending survival of melanoma patients. However, these drugs display paradoxical activation in normal tissue with BRAFWT due to RAF transactivation and priming, acquired drug resistance, and limited clinical effectiveness in non-V600 BRAF-dependent tumors, underscoring the urgent need to develop improved BRAF inhibitors. This review provides an overview of recent structural and biochemical insights into the mechanisms of BRAF regulation by BRAF inhibitors that are linked to their clinical activity, clinical liabilities, and medicinal chemistry properties. The effectiveness and challenges of structurally diverse next generation RAF inhibitors currently in preclinical and clinical development are discussed, along with mechanistic insights for developing more effective RAF inhibitors targeting different oncogenic BRAF conformations.


Assuntos
Neoplasias/tratamento farmacológico , Inibidores de Proteínas Quinases/farmacologia , Proteínas Proto-Oncogênicas B-raf/antagonistas & inibidores , Animais , Descoberta de Drogas , Humanos , Mutação , Neoplasias/enzimologia , Inibidores de Proteínas Quinases/uso terapêutico , Proteínas Proto-Oncogênicas B-raf/química , Proteínas Proto-Oncogênicas B-raf/genética , Proteínas Proto-Oncogênicas B-raf/metabolismo
8.
PLoS Comput Biol ; 10(10): e1003895, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25340423

RESUMO

The PIK3CA gene is one of the most frequently mutated oncogenes in human cancers. It encodes p110α, the catalytic subunit of phosphatidylinositol 3-kinase alpha (PI3Kα), which activates signaling cascades leading to cell proliferation, survival, and cell growth. The most frequent mutation in PIK3CA is H1047R, which results in enzymatic overactivation. Understanding how the H1047R mutation causes the enhanced activity of the protein in atomic detail is central to developing mutant-specific therapeutics for cancer. To this end, Surface Plasmon Resonance (SPR) experiments and Molecular Dynamics (MD) simulations were carried out for both wild-type (WT) and H1047R mutant proteins. An expanded positive charge distribution on the membrane binding regions of the mutant with respect to the WT protein is observed through MD simulations, which justifies the increased ability of the mutated protein variant to bind to membranes rich in anionic lipids in our SPR experiments. Our results further support an auto-inhibitory role of the C-terminal tail in the WT protein, which is abolished in the mutant protein due to loss of crucial intermolecular interactions. Moreover, Functional Mode Analysis reveals that the H1047R mutation alters the twisting motion of the N-lobe of the kinase domain with respect to the C-lobe and shifts the position of the conserved P-loop residues in the vicinity of the active site. These findings demonstrate the dynamical and structural differences of the two proteins in atomic detail and propose a mechanism of overactivation for the mutant protein. The results may be further utilized for the design of mutant-specific PI3Kα inhibitors that exploit the altered mutant conformation.


Assuntos
Mutação/genética , Proteínas de Neoplasias , Fosfatidilinositol 3-Quinases , Classe I de Fosfatidilinositol 3-Quinases , Análise por Conglomerados , Humanos , Modelos Biológicos , Simulação de Dinâmica Molecular , Proteínas de Neoplasias/química , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Neoplasias , Fosfatidilinositol 3-Quinases/química , Fosfatidilinositol 3-Quinases/genética , Fosfatidilinositol 3-Quinases/metabolismo , Ligação Proteica , Ressonância de Plasmônio de Superfície
9.
Gene ; 536(1): 65-73, 2014 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-24333853

RESUMO

Arylamine N-acetyltransferases (NATs) are polymorphic enzymes mediating the biotransformation of arylamine/arylhydrazine xenobiotics, including pharmaceuticals and environmental carcinogens. The NAT1 and NAT2 genes, and their many polymorphic variants, have been thoroughly studied in humans by pharmacogeneticists and cancer epidemiologists. However, little is known about the function of NAT homologues in other primate species, including disease models. Here, we perform a comparative functional investigation of the NAT2 homologues of the rhesus macaque and human. We further dissect the functional impact of a previously described rhesus NAT2 gene polymorphism, causing substitution of valine by isoleucine at amino acid position 231. Gene constructs of rhesus and human NAT2, bearing or lacking non-synonymous polymorphism c.691G>A (p.Val231Ile), were expressed in Escherichia coli for comparative enzymatic analysis against various NAT1- and NAT2-selective substrates. The results suggest that the p.Val231Ile polymorphism does not compromise the stability or overall enzymatic activity of NAT2. However, substitution of Val231 by the bulkier isoleucine appears to alter enzyme substrate selectivity by decreasing the affinity towards NAT2 substrates and increasing the affinity towards NAT1 substrates. The experimental observations are supported by in silico modelling localizing polymorphic residue 231 close to amino acid loop 125-129, which forms part of the substrate binding pocket wall and determines the substrate binding preferences of the NAT isoenzymes. The p.Val231Ile polymorphism is the first natural polymorphism demonstrated to affect NAT substrate selectivity via this particular mechanism. The study is also the first to thoroughly characterize the properties of a polymorphic NAT isoenzyme in a non-human primate model.


Assuntos
Macaca mulatta/genética , Polimorfismo de Nucleotídeo Único , Substituição de Aminoácidos , Animais , Arilamina N-Acetiltransferase/química , Arilamina N-Acetiltransferase/genética , Domínio Catalítico/genética , Estabilidade Enzimática/genética , Humanos , Isoenzimas/genética , Isoleucina/genética , Modelos Moleculares , Especificidade por Substrato/genética , Valina/genética
10.
PLoS One ; 8(3): e58485, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23516487

RESUMO

Mitotic regulators exhibiting gain of function in tumor cells are considered useful cancer therapeutic targets for the development of small-molecule inhibitors. The human Aurora kinases are a family of such targets. In this study, from a panel of 105 potential small-molecule inhibitors, two compounds Tripolin A and Tripolin B, inhibited Aurora A kinase activity in vitro. In human cells however, only Tripolin A acted as an Aurora A inhibitor. We combined in vitro, in vivo single cell and in silico studies to demonstrate the biological action of Tripolin A, a non-ATP competitive inhibitor. Tripolin A reduced the localization of pAurora A on spindle microtubules (MTs), affected centrosome integrity, spindle formation and length, as well as MT dynamics in interphase, consistent with Aurora A inhibition by RNAi or other specific inhibitors, such as MLN8054 or MLN8237. Interestingly, Tripolin A affected the gradient distribution towards the chromosomes, but not the MT binding of HURP (Hepatoma Up-Regulated Protein), a MT-associated protein (MAP) and substrate of the Aurora A kinase. Therefore Tripolin A reveals a new way of regulating mitotic MT stabilizers through Aurora A phosphorylation. Tripolin A is predicted to bind Aurora A similarly but not identical to MLN8054, therefore it could be used to dissect pathways orchestrated by Aurora kinases as well as a scaffold for further inhibitor development.


Assuntos
Descoberta de Drogas , Hidroquinonas/farmacologia , Indóis/farmacologia , Microtúbulos/efeitos dos fármacos , Microtúbulos/metabolismo , Inibidores de Proteínas Quinases/farmacologia , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Aurora Quinases , Células HeLa , Humanos , Mitose/efeitos dos fármacos , Transporte Proteico/efeitos dos fármacos
11.
PLoS Pathog ; 5(8): e1000542, 2009 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-19662170

RESUMO

Recognition of peptidoglycan (PGN) is paramount for insect antibacterial defenses. In the fruit fly Drosophila melanogaster, the transmembrane PGN Recognition Protein LC (PGRP-LC) is a receptor of the Imd signaling pathway that is activated after infection with bacteria, mainly Gram-negative (Gram-). Here we demonstrate that bacterial infections of the malaria mosquito Anopheles gambiae are sensed by the orthologous PGRPLC protein which then activates a signaling pathway that involves the Rel/NF-kappaB transcription factor REL2. PGRPLC signaling leads to transcriptional induction of antimicrobial peptides at early stages of hemolymph infections with the Gram-positive (Gram+) bacterium Staphylococcus aureus, but a different signaling pathway might be used in infections with the Gram- bacterium Escherichia coli. The size of mosquito symbiotic bacteria populations and their dramatic proliferation after a bloodmeal, as well as intestinal bacterial infections, are also controlled by PGRPLC signaling. We show that this defense response modulates mosquito infection intensities with malaria parasites, both the rodent model parasite, Plasmodium berghei, and field isolates of the human parasite, Plasmodium falciparum. We propose that the tripartite interaction between mosquito microbial communities, PGRPLC-mediated antibacterial defense and infections with Plasmodium can be exploited in future interventions aiming to control malaria transmission. Molecular analysis and structural modeling provided mechanistic insights for the function of PGRPLC. Alternative splicing of PGRPLC transcripts produces three main isoforms, of which PGRPLC3 appears to have a key role in the resistance to bacteria and modulation of Plasmodium infections. Structural modeling indicates that PGRPLC3 is capable of binding monomeric PGN muropeptides but unable to initiate dimerization with other isoforms. A dual role of this isoform is hypothesized: it sequesters monomeric PGN dampening weak signals and locks other PGRPLC isoforms in binary immunostimulatory complexes further enhancing strong signals.


Assuntos
Anopheles/imunologia , Anopheles/microbiologia , Infecções Bacterianas/imunologia , Proteínas de Transporte/imunologia , Plasmodium/imunologia , Processamento Alternativo , Sequência de Aminoácidos , Animais , Anopheles/metabolismo , Proteínas de Transporte/química , Proteínas de Transporte/genética , DNA Bacteriano/genética , Feminino , Malária/imunologia , Malária/transmissão , Dados de Sequência Molecular , Isoformas de Proteínas/imunologia , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transdução de Sinais/imunologia
12.
J Mol Biol ; 373(3): 587-98, 2007 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-17868693

RESUMO

Lethocerus indirect flight muscle has two isoforms of troponin C, TnC-F1 and F2, which are unusual in having only a single C-terminal calcium binding site (site IV, isoform F1) or one C-terminal and one N-terminal site (sites IV and II, isoform F2). We show here that thin filaments assembled from rabbit actin and Lethocerus tropomyosin (Tm) and troponin (Tn) regulate the binding of rabbit myosin to rabbit actin in much the same way as the mammalian regulatory proteins. The removal of calcium reduces the rate constant for S1 binding to regulated actin about threefold, independent of which TmTn is used. This is consistent with calcium removal causing the TmTn to occupy the B or blocked state to about 70% of the total. The mid point pCa for the switch differed for TnC-F1 and F2 (pCa 6.9 and 6.0, respectively) consistent with the reported calcium affinities for the two TnCs. Equilibrium titration of S1 binding to regulated actin filaments confirms calcium regulated binding of S1 to actin and shows that in the absence of calcium the three actin filaments (TnC-F1, TnC-F2 and mammalian control) are almost indistinguishable in terms of occupancy of the B and C states of the filament. In the presence of calcium TnC-F2 is very similar to the control with approximately 80% of the filament in the C-state and 10-15% in the fully on M-State while TnC-F1 has almost 50% in each of the C and M states. This higher occupancy of the M-state for TnC-F1, which occurs above pCa 6.9, is consistent with this isoform being involved in the calcium activation of stretch activation. However, it leaves unanswered how a C-terminal calcium binding site of TnC can activate the thin filament.


Assuntos
Actinas/metabolismo , Heterópteros/metabolismo , Músculo Esquelético/fisiologia , Miofibrilas/fisiologia , Tropomiosina/metabolismo , Troponina C/metabolismo , Animais , Cálcio/metabolismo , Modelos Biológicos , Contração Muscular/fisiologia , Ligação Proteica , Coelhos , Transdução de Sinais
13.
Structure ; 15(7): 813-24, 2007 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-17637342

RESUMO

To gain a molecular description of how muscles can be activated by mechanical stretch, we have solved the structure of the calcium-loaded F1 isoform of troponin C (TnC) from Lethocerus and characterized its interactions with troponin I (TnI). We show that the presence of only one calcium cation in the fourth EF hand motif is sufficient to induce an open conformation in the C-terminal lobe of F1 TnC, in contrast with what is observed in vertebrate muscle. This lobe interacts in a calcium-independent way both with the N terminus of TnI and, with lower affinity, with a region of TnI equivalent to the switch and inhibitory peptides of vertebrate muscles. Using both synthetic peptides and recombinant proteins, we show that the N lobe of F1 TnC is not engaged in interactions with TnI, excluding a regulatory role of this domain. These findings provide insights into mechanically stimulated muscle contraction.


Assuntos
Cálcio/metabolismo , Heterópteros/metabolismo , Modelos Moleculares , Troponina C/química , Sequência de Aminoácidos , Animais , Voo Animal , Heterópteros/fisiologia , Dados de Sequência Molecular , Contração Muscular/fisiologia , Músculos/fisiologia , Ressonância Magnética Nuclear Biomolecular , Conformação Proteica , Isoformas de Proteínas/química , Isoformas de Proteínas/fisiologia , Troponina C/fisiologia
14.
Dev Comp Immunol ; 31(9): 879-88, 2007.
Artigo em Inglês | MEDLINE | ID: mdl-17287020

RESUMO

Hemolymph coagulation is a first response to injury, impeding infection, and ending bleeding. Little is known about its molecular basis in insects, but clotting factors have been identified in the fruit fly Drosophila melanogaster. Here, we have begun to study coagulation in the aquatic larvae of the malaria vector mosquito Anopheles gambiae using methods developed for Drosophila. A delicate clot was seen by light microscopy, and pullout and proteomic analysis identified phenoloxidase and apolipophorin-I as major candidate clotting factors. Electron microscopic analysis confirmed clot formation and revealed it contains fine molecular sheets, most likely a result of lipophorin assembly. Phenoloxidase appears to be more critical in clot formation in Anopheles than in Drosophila. The Anopheles larval clot thus differs in formation, structure, and composition from the clot in Drosophila, confirming the need to study coagulation in different insect species to learn more about its evolution and adaptation to different lifestyles.


Assuntos
Anopheles/crescimento & desenvolvimento , Coagulação Sanguínea , Hemolinfa , Animais , Anopheles/ultraestrutura , Drosophila melanogaster , Larva/crescimento & desenvolvimento , Larva/ultraestrutura , Microscopia Eletrônica de Transmissão
15.
J Biol Chem ; 279(42): 43879-85, 2004 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-15297450

RESUMO

MutS is the key protein of the Escherichia coli DNA mismatch repair system. It recognizes mispaired and unpaired bases and has intrinsic ATPase activity. ATP binding after mismatch recognition by MutS serves as a switch that enables MutL binding and the subsequent initiation of mismatch repair. However, the mechanism of this switch is poorly understood. We have investigated the effects of ATP binding on the MutS structure. Crystallographic studies of ATP-soaked crystals of MutS show a trapped intermediate, with ATP in the nucleotide-binding site. Local rearrangements of several residues around the nucleotide-binding site suggest a movement of the two ATPase domains of the MutS dimer toward each other. Analytical ultracentrifugation experiments confirm such a rearrangement, showing increased affinity between the ATPase domains upon ATP binding and decreased affinity in the presence of ADP. Mutations of specific residues in the nucleotide-binding domain reduce the dimer affinity of the ATPase domains. In addition, ATP-induced release of DNA is strongly reduced in these mutants, suggesting that the two activities are coupled. Hence, it seems plausible that modulation of the affinity between ATPase domains is the driving force for conformational changes in the MutS dimer. These changes are driven by distinct amino acids in the nucleotide-binding site and form the basis for long-range interactions between the ATPase domains and DNA-binding domains and subsequent binding of MutL and initiation of mismatch repair.


Assuntos
Adenosina Trifosfatases/química , Adenosina Trifosfatases/metabolismo , Trifosfato de Adenosina/análogos & derivados , Trifosfato de Adenosina/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Pareamento Incorreto de Bases/genética , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/metabolismo , Escherichia coli/enzimologia , Escherichia coli/genética , Substituição de Aminoácidos , Cristalografia por Raios X , Proteínas de Escherichia coli , Modelos Moleculares , Proteína MutS de Ligação de DNA com Erro de Pareamento , Mutagênese Sítio-Dirigida , Conformação Proteica , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo
17.
EMBO J ; 23(4): 772-9, 2004 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-14765112

RESUMO

The flight muscles of many insects have a form of regulation enabling them to contract at high frequencies. The muscles are activated by periodic stretches at low Ca2+ levels. The same muscles also give isometric contractions in response to higher Ca2+. We show that the two activities are controlled by different isoforms of TnC (F1 and F2) within single myofibrils. F1 binds one Ca2+ with high affinity in the C-terminal domain and F2 binds one Ca2+ in the C-terminal domain and one exchangeable Ca2+ in the N-terminal domain. We have characterised the isoforms and determined their effect on the development of stretch-activated and Ca2+-activated tension by replacing endogenous TnC in Lethocerus flight muscle fibres with recombinant isoforms. Fibres with F1 gave stretch-activated tension and minimal isometric tension; those with F2 gave Ca2+-dependent isometric tension and minimal stretch-activated tension. Regulation by a TnC responding to stretch rather than Ca2+ is unprecedented and has resulted in the ability of insect flight muscle to perform oscillatory work at low Ca2+ concentrations, a property to which a large number of flying insects owe their evolutionary success.


Assuntos
Cálcio/fisiologia , Heterópteros/fisiologia , Miofibrilas/fisiologia , Troponina C/metabolismo , Actomiosina/metabolismo , Adenosina Trifosfatases/metabolismo , Animais , Voo Animal , Heterópteros/metabolismo , Contração Muscular/fisiologia , Miofibrilas/metabolismo , Isoformas de Proteínas/metabolismo
18.
Biochem J ; 371(Pt 3): 811-21, 2003 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-12558500

RESUMO

The indirect flight muscles (IFMs) of Lethocerus (giant water bug) and Drosophila (fruitfly) are asynchronous: oscillatory contractions are produced by periodic stretches in the presence of a Ca(2+) concentration that does not fully activate the muscle. The troponin complex on thin filaments regulates contraction in striated muscle. The complex in IFM has subunits that are specific to this muscle type, and stretch activation may act through troponin. Lethocerus and Drosophila have an unusual isoform of the Ca(2+)-binding subunit of troponin, troponin C (TnC), with a single Ca(2+)-binding site near the C-terminus (domain IV); this isoform is only in IFMs, together with a minor isoform with an additional Ca(2+)-binding site in the N-terminal region (domain II). Lethocerus has another TnC isoform in leg muscle which also has two Ca(2+)-binding sites. Ca(2+) binds more strongly to domain IV than to domain II in two-site isoforms. There are four isoforms in Drosophila and Anopheles (malarial mosquito), three of which are also in adult Lethocerus. A larval isoform has not been identified in Lethocerus. Different TnC isoforms are expressed in the embryonic, larval, pupal and adult stages of Drosophila; the expression of the two IFM isoforms is increased in the pupal stage. Immunoelectron microscopy shows the distribution of the major IFM isoform with one Ca(2+)-binding site is uniform along Lethocerus thin filaments. We suggest that initial activation of IFM is by Ca(2+) binding to troponin with the two-site TnC, and full activation is through the action of stretch on the complex with the one-site isoform.


Assuntos
Músculos/metabolismo , Troponina C/metabolismo , Sequência de Aminoácidos , Animais , Anopheles , Sequência de Bases , Cálcio/metabolismo , Primers do DNA , Drosophila , Microscopia Imunoeletrônica , Dados de Sequência Molecular , Isoformas de Proteínas/química , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Homologia de Sequência de Aminoácidos , Troponina C/química , Troponina C/genética
19.
J Mol Biol ; 326(1): 151-65, 2003 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-12547198

RESUMO

Insect glutathione-S-transferases (GSTs) are grouped in three classes, I, II and recently III; class I (Delta class) enzymes together with class III members are implicated in conferring resistance to insecticides. Class II (Sigma class) GSTs, however, are poorly characterized and their exact biological function remains elusive. Drosophila glutathione S-transferase-2 (GST-2) (DmGSTS1-1) is a class II enzyme previously found associated specifically with the insect indirect flight muscle. It was recently shown that GST-2 exhibits considerable conjugation activity for 4-hydroxynonenal (4-HNE), a lipid peroxidation product, raising the possibility that it has a major anti-oxidant role in the flight muscle. Here, we report the crystal structure of GST-2 at 1.75A resolution. The GST-2 dimer shows the canonical GST fold with glutathione (GSH) ordered in only one of the two binding sites. While the GSH-binding mode is similar to other GST structures, a distinct orientation of helix alpha6 creates a novel electrophilic substrate-binding site (H-site) topography, largely flat and without a prominent hydrophobic-binding pocket, which characterizes the H-sites of other GSTs. The H-site displays directionality in the distribution of charged/polar and hydrophobic residues creating a binding surface that explains the selectivity for amphipolar peroxidation products, with the polar-binding region formed by residues Y208, Y153 and R145 and the hydrophobic-binding region by residues V57, A59, Y211 and the C-terminal V249. A structure-based model of 4-HNE binding is presented. The model suggest that residues Y208, R145 and possibly Y153 may be key residues involved in catalysis.


Assuntos
Drosophila melanogaster/enzimologia , Glutationa Transferase/química , Glutationa Transferase/classificação , Peroxidação de Lipídeos , Aldeídos/metabolismo , Sequência de Aminoácidos , Animais , Sítios de Ligação , Catálise , Cristalografia por Raios X , Dimerização , Glutationa/metabolismo , Glutationa Transferase/metabolismo , Humanos , Interações Hidrofóbicas e Hidrofílicas , Modelos Moleculares , Dados de Sequência Molecular , Estrutura Quaternária de Proteína , Estrutura Terciária de Proteína , Subunidades Proteicas , Alinhamento de Sequência
20.
EMBO J ; 21(9): 2117-21, 2002 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-11980708

RESUMO

Phosphatidylinositol transfer protein alpha (PITP alpha) is a ubiquitous and highly conserved protein in multicellular eukaryotes that catalyzes the exchange of phospholipids between membranes in vitro and participates in cellular phospholipid metabolism, signal transduction and vesicular trafficking in vivo. Here we report the three-dimensional crystal structure of a phospholipid-free mouse PITP alpha at 2.0 A resolution. The structure reveals an open conformation characterized by a channel running through the protein. The channel is created by opening the phospholipid-binding cavity on one side by displacement of the C-terminal region and a hydrophobic lipid exchange loop, and on the other side by flattening of the central beta-sheet. The relaxed conformation is stabilized at the proposed membrane association site by hydrophobic interactions with a crystallographically related molecule, creating an intimate dimer. The observed open conformer is consistent with a membrane-bound state of PITP and suggests a mechanism for membrane anchoring and the presentation of phosphatidylinositol to kinases and phospholipases after its extraction from the membrane. Coordinates have been deposited in the Protein Data Bank (accession No. 1KCM).


Assuntos
Proteínas de Transporte/química , Membranas Intracelulares/química , Proteínas de Membrana , Proteínas de Saccharomyces cerevisiae , Animais , Sítios de Ligação/fisiologia , Proteínas de Transporte/fisiologia , Cristalografia por Raios X , Membranas Intracelulares/fisiologia , Membranas Intracelulares/ultraestrutura , Camundongos , Modelos Moleculares , Proteínas de Transferência de Fosfolipídeos , Estrutura Terciária de Proteína
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...